Petro-geochemistry and zircon U-Pb dating of the late Variscan Flamanville granodiorite and its Paleoproterozoic basement (Normandy, France)

Pétrogéochimie et datation U-Pb sur zircon de la granodiorite tardi-varisque de Flamanville et son soubassement paléoprotérozoïque (Normandie, France) Martin Erwan^{1*}, François Camille², Paquette Jean-Louis³, Capdevila Ramon⁴, Lejeune Anne-Marie¹

Géologie de la France, n° 1, 2018, p. 34-48, 13 fig., 1 tab. 3 app.

Keywords: Flamanville granodiorite, Armorican Massif, zircon dating, magma genesis, Variscan geology

Mots-clés : Granodiorite de Flamanville, massif Armoricain, datations sur zircon, genèse des magmas, géologie Varisque

Abstract

We report for the first time the petro-geochemical study and the emplacement age of the Flamanville granitoid pluton, which is one of the most pedagogical and frequently visited granitoid in France. This study shows that it consists of a potassic alkaline to calc-alkaline and metaluminous granodiorite with biotite, hornblende and pluri-centimetric potassic feldspar megacrysts. In situ U-Pb dating on zircon crystals established that this pluton was formed at 318.1 \pm 1.5 Ma, which is older than previously obtained by Rb-Sr and K-Ar methods on biotite (between 299 and 316 Ma). We also report the oldest age measured in France, 2043 ± 4 Ma from in situ U-Pb dating on zircon crystals from the Anse du Cul-Rond gneiss, which could be representative of the Paleoproterozoic crust in which the Flamanville pluton emplaced. These zircons also record an age of 547 ± 15 Ma corresponding to metamorphism during the Cadomian orogeny.

Emplaced in a Paleoproterozoic basement affected by the Cadomian orogeny, the Flamanville granodiorite is clearly linked to the Type 2 and Type 3 Variscan metaluminous granitoids from Armorican Massif (Mg- and Fe -KCG, respectively). Major and trace elements, Sr- Nd- and O-isotopic compositions as well as the lack of inherited zircon cores, clearly indicate that the magmatic source is mantellic with only modest crustal influence. This can be

*Corresponding author: erwan.martin@sorbonne-universite.fr

Manuscrit reçu le 2 juillet 2018, accepté le 5 novembre 2018

due to mantle metasomatism by crustal fluids/melts during the subduction of the continental crust at the first stage of the collision or to crustal contamination/assimilation during the emplacement of the mantellic magma into the crust.

Résumé

Nous reportons pour la première fois une étude pétrologique, géochimique et géochronologique du pluton de granitoïde de Flamanville, qui est le pluton le plus visité et le plus pédagogique en France. Cette étude montre qu'il a une composition de granodiorite potassique alcaline à calco-alcaline et méta-alumineuse avec de la biotite, de la hornblende et des mégacristaux pluri-centimétriques de feldspath potassique. Des datations in situ U-Pb sur zircons ont été menées et montrent que ce pluton s'est mis en place à 318,1 ± 1,5 Ma, ce qui est plus ancien que les résultats obtenus par de précédentes datations par les méthodes Rb-Sr et K-Ar sur biotite (entre 299 et 316 Ma). Nous reportons également le plus vieil âge mesuré en France, c'est-à-dire 2043 ± 4 Ma obtenu à partir de datations U-Pb in situ sur des zircons du gneiss de l'Anse du Cul-Rond, qui pourrait représenter la croûte Paléoproterozoïque dans laquelle le pluton de Flamanville s'est mis en place. Ces zircons enregistrent également un âge de 547 ± 15 Ma correspondant au métamorphisme lors de l'orogène Cadomien.

Mise en place dans un socle Paléoprotérozoïque affecté par l'orogenèse cadomienne, la granodiorite de Flamanville est clairement liée aux granitoïdes métalumineux varisques de Type 2 et Type 3 du Massif Armoricain (Mg- et Fe-KCG respectivement). Les compositions en éléments majeurs, traces et en isotopes de

¹, Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193, F-75005 Paris, France.

², Early Life Traces & Evolution-Astrobiology, Department of Geology, University of Liège, 4000 Liège, Belgium

³, Laboratoire Magmas et Volcans (CNRS UMR 6524), Université Clermont Auvergne; F-63 000 Clermont-Ferrand Cedex, France

⁴, Géosciences Rennes (CNRS UMR6118), Université de Rennes 1, 35042 Rennes, France

l'O, du Sr et du Nd aussi bien que l'absence de cœurs hérités dans les zircons indiquent clairement que la source magmatique est mantellique avec une faible influence crustale. Cela peut être dû à la métasomatose de la source mantellique par des fluides/magmas crustaux durant la subduction de la croûte continentale au premier stade de la collision ou dû à une contamination/assimilation crustale durant l'emplacement du magma mantellique dans la croûte.

1. Introduction

The Flamanville pluton is probably the most visited intrusive granitoid in France as it is very accessible and pedagogical with its spectacular shape in the landscape as well as its contact with the country rocks, illustrating perfectly well how plutons form (Brun et al., 1990). It has been indirectly characterized as being similar in composition and age to granitoids from the North of the Armorican Massif (AM) such as Ploumanac'h, Albert-Ildut, Saint Renan, Morlaix's Bay, Barfleur and Porzpaul (Ouessant Island) plutons (e.g. Capdevila 2010). However, only three major element analyses on whole rock as well as one K-Ar and three Rb-Sr radiometric analyses on biotite crystals giving ages between 299 and 316 Ma have been published on the Flamanville pluton (Graindor and Wasserburg, 1962; Adams, 1976; Vidal, 1980; Capdevila, 2010; Thiéblemont et al., 2017). Therefore, doubts remain on its place and role in the AM geological history.

In this paper, after a petro-geochemical description we present a new and precise *in situ* U-Pb dating on zircon crystals from the Flamanville pluton. We also report precise U-Pb zircon ages on the gneiss from the Anse du Cul-Rond that could be considered as representative of the oldest crustal basement in which the Flamanville pluton was intruded. Furthermore, this gneiss recorded the oldest stage of the French geological history from the Paleoproterozoic (2.04 Ga) to the Neoproterozoic (547 Ma).

2. Geological background

The AM, a part of the Variscan chain, can be divided into six different domains, the Léon Domain in the North-West, the North Armorican Domain, the central Armorican Domain, the South Armorican Domain and the Lanvaux and Mauges Domains between the last two (Fig. 1; Ballèvre *et al.*, 2013; Ballèvre, 2016 and references therein). It is noteworthy that another subdivision considering only three domains separated by ophiolitic suture zones has been also proposed by M. Faure *et al.* (2005).

The gneiss from l'Anse du Cul-Rond, which could be considered as representative of the crust in which the Flamanville pluton was intruded, is located in the North Armorican domain (Fig. 1) and was dated both by single and multi-grain ID-TIMS U-Pb zircon method and SHRIMP *in situ* dating in a previous study (Inglis *et al.*, 2004). In this previous study, zircons dated by ID-TIMS were discordant and define a Discordia line intersecting the Concordia at 2061 ± 2.7 Ma, whereas SHRIMP mean ²⁰⁷Pb/²⁰⁶Pb age on

spot analysis of two grains was 2043 \pm 6 Ma. These ages were considered as representative of the crystallization age of the granitic protolith of this rock. U-Pb dating determined from three spot analyses of the zircon overgrowths yielded concordant Neoproterozoic dates at 616.9 \pm 6.7 Ma (MSWD_{C+E}= 0.48; recalculated using Isoplot at the 2 σ level) corresponding to the Cadomian metamorphism that affected the zircon crystals (Inglis *et al.*, 2004).

Fig. 1. Location of the five different types of Variscan granitoids in the Armorican Massif (modified from R. Capdevila 2010). The different domains are from M. Ballèvre *et al.* (2013 and references therein). Type 1: ACG; Type 2: Mg-KCG; Type 3: Fe-KCG; Type 4: CPG; Type 5: MPG. (ACG: Calc-alkaline granitoids; Mg-KCG: magnesian calc-alkaline granitoids; Fe-KCG; ferriferous calc-alkaline granitoids; CPG: Cordierite-bearing peraluminous granitoids; MPG: Muscovite-bearing peraluminous granitoids).

Fig. 1. Localisation des cinq différents types de granitoïdes varisques dans le Massif armoricain (modifié d'après R. Capdevila, 2010). Les différents domaines proviennent de M. Ballèvre et al. (2013). Type 1: ACG; Type 2: Mg-KCG ; Type 3: Fe-KCG ; Type 4: CPG ; Type 5: MPG. (ACG: granitoïdes calco-alcalins ; Mg-KCG: granitoïdes calco-alcalins riches en magnésium; Fe-KCG; granitoïdes calco-alcalins riche en fer ; CPG: granitoïdesperalumineux à cordiérite; MPG: granitoïdes peralumineux à muscovite).

The Flamanville pluton, located in the North Armorican Domain, was emplaced into Cambrian to Devonian sediments and shows a spectacular contact metamorphism aureole (Fig. 2; e.g. Abréal, 2009; Marcoux *et al.*, 2012 and references therein). Based on 4 biotite crystal analyses, it was previously dated between 299 and 316 Ma (Adams, 1976; Vidal, 1980). Despite the imprecise dating, the Flamanville pluton is clearly linked to the Variscan history of the AM.

Variscan granitoids are present in all different Armorican domains. As suggested by R. Capdevila (2010) and based on petro-geochemical criteria, they can be classified into 5 different types.

- Type 1: Calc-alkaline granitoids (ACG; Barbarin, 1999) with biotite and hornblende (Fig. 1). This type is only represented in Vendée (SE of the South Armorican Shear Zones). Its age is estimated to be around 370-375 Ma, based on U-Pb dating on zircon from the quartzodiorite from Le Tallud of 373 +6-11 Ma (Cuney *et al.*, 1993).

- **Type 2**: High-K-Mg calc-alkaline granitoids (magnesian KCG; Barbarin, 1999) that consists mainly of metaluminous monzogranites containing biotite and hornblende (Fig. 1). Located along the North Armorican Shear Zone, they were dated between 329 ± 5 Ma and 291 ± 9 Ma based on Rb-Sr on whole rock dating at Plouaret

and Quintin respectively (Peucat et al., 1984). Unfortunately, no precise U-Pb dating on zircon exists so far for this type of granitoids.

- **Type 3**: High-K-Fe calc-alkaline granitoids (ferriferous KCG; Barbarin, 1999), including metaluminous monzogranite and syenite with biotite and hornblende (Fig. 1). Located in the North of the AM, following a SW-NE Cadomian direction, they were dated between. 300 and 310 Ma, based on U-Pb dating on zircon from the Albert Ildut (303.8 ± 0.9 Ma; Caroff *et al.*, 2015) and Ploumanac'h (between 308.8 ± 2.5 and 301.3 ± 1.7; Dubois, 2014) massifs.

- Type 4: Cordierite-bearing peraluminous granitoids (CPG; Barbarin, 1999) with mostly monzogranites to granites containing biotite and cordierite. Located in the West of the AM, they were dated from 310 to 320 Ma, based on U-Pb dating on zircon at Huelgoat (314 Ma; Ballouard, 2016), Pontivy-Rostrenen (316 ± 3Ma, Euzen, 1993; 315.2 ± 2.9 Ma, Ballouard *et al.*, 2017).

- Type 5: Muscovite-bearing peraluminous granitoids (MPG; Barbarin, 1999), which consist of muscovite-biotite granites. Located all along the South Armorican Shear Zone and in the Léon Domain they were dated between 310 and 320 Ma, based on U-Pb dating on zircon and monazite from the Guérande: 309.7 ± 1.3 Ma (Ballouard *et al.*, 2015), Lizio: 316 \pm 5.6 Ma (Tartèse *et al.*, 2011a), Questembert: 316 \pm 2.9 Ma (Tartèse *et al.*, 2011b) and Saint Renan: 316 \pm 2.0

Fig. 2. Geological map of the Flamanville pluton and its metamorphism aureole (contoured by the doted black line). The pluton was emplaced into Cambrian to Devonian sediments that consist mainly of arkose, pelite and sandstone. Modified from E. Marcoux *et al.* (2012). Samples from this study were collected close to Diélette (see the text for further information).

Fig. 2. Carte géologique du pluton de Flamanville et son auréole de métamorphisme (représentée par la ligne noire en pointillés). Le pluton s'est mis en place dans des sédiments cambriens à dévoniens composés principalement d'arkose, de pélite et de grès. Modifiée après E. Marcoux et al. (2012). Les échantillons de cette étude on été collectés à proximité de Diélette (voir le texte pour la localization precise).

Ma (Le Gall et al., 2014) massifs

GÉOLOGIE DE LA FRANCE, N° 1, 2018

3. Petrographical characteristics

Samples from this study were collected at Diélette (at the entrance of the nuclear power plant; N 49°32'49.13" W1° 52'13.37"; Figs. 2 and 3a), where thousands of students and tourists come every year to observe and study the pluton and its metamorphic aureole. Fresh samples were collected from the pluton rim at 20-40 m from the sharp contact with the country rocks that consist of a spectacular grenatite formed by contact metamorphism (Abréal, 2009). The whole rock is a granitoid containing pluri-millimetric and xenomorphic quartz crystals, automorphic feldspars, and sub-millimetric ferro-magnesian minerals (biotite and amphibole; Fig. 3). In addition, pluri-centimetric pale pink orthoclase crystals (usually zoned (Rapakivi texture); Fig. 3d) are present and clearly visible on the outcrop. Rounded enclaves rich in ferro-magnesian minerals are present in this location (Figs. 3b and c). However, unlike in the southern contact of the pluton (Le Havre Jouan in the North of the Sciotot Bay), no sharp enclaves of metamorphosed country rocks are observed. At the sampling location, centimeterthick aplite veins are also present and overprint all the features described above (Fig. 3) and are clearly linked to the late history of the pluton emplacement and cooling.

Fig. 3. Photos of (a) the outcrop where samples were collected at Diélette (France), (b) rounded ferro-magnesian enclave in the porphyritic granodiorite; (c) aplite veins overprinting the whole structure; (d) zoned feldspar megacryst with a Rapakivi texture.

Fig. 3. Photos (a) de l'affieurement où les échantillons ont été collectés à Diélette (France), (b) d'une enclave ferromagnésienne dans la granodiorite porphyrique ; (c) des veines d'aplite recoupant la granodiorite et les enclaves ; (d) d'un phénocristal de feldspath zoné à texture Rapakivi.

The Flamanville granitoid has a porphyritic texture (Figs. 3 and 4) with pluri-centimetric potassic feldspar megacrysts and a pluri-millimetric matrix composed at more than 90% of quartz (20-25%), plagioclase that is mostly albitic (45-50%; An₅₋₃₀Ab₆₇₋₉₅Or₀₋₈; Fig. 5b and Appendix 1) and potassic feldspar (25-30%; An₀₋₁Ab₇₋₂₅Or₇₄₋₉₃; Fig. 5b and Appendix 1) and some (≤10%) biotite (Al-poor biotite with 0.55<X_{Mg}<0.65 and 2.78<Si<2.9; Fig. 5a and Appendix 1), green amphibole (Edenite: Na+K>0.05 and X_{Mg}<0.5; Fig. 5c and Appendix 1) and accessory minerals (<1%) such as titanite, apatite, magnetite, monazite and zircon.

The presence of Al-poor biotite and amphibole, and the absence of cordierite ($Al_3Mg_2AlSi_5O_{18}$) and muscovite (KAl_2

 $(AISi_3O_{10})(OH,F)_2$) suggest a metaluminous affinity like the Type 1, 2 and 3 Variscan granitoids from the Armorican Massif described above.

Fig. 4. Major phases of the Flamanville granodiorite. On the left observation under plane polarized light and on the right under cross-polarized light (Qtz: quartz; Fsp: feldspar; Kfs: potassic feldspar; Bt: biotite; HbI: Hornblende).

Fig. 4. Phases majeures de la granodiorite de Flamanville. A gauche, observation en lumière polarisée non-analysée et à droite, lumière polarisée analysée (Qtz : quart z; Fsp: feldspath ; Kfs : feldspath potassique ; Bt : biotite; HbI : Hornblende).

Fig. 5. Composition diagrams of (a) biotite, (b) feldspar and (c) amphibole crystals from the Flamanville pluton.

Fig. 5. Diagrammes de composition de cristaux de (a) biotites, (b) feldspaths et (c) amphiboles provenant du pluton de Flamanville.

4. Geochemistry

4.1. Analytical methods

Whole rock samples were crushed into powder for bulk major, trace and Sr-Nd isotopic analyses. Zircon crystals were extracted from the whole rock by heavy liquid (methylene iodide) methods for Laser-Ablation Inductively-Coupled Plasma Mass-Spectrometry (LA-ICPMS) U-Pb dating and oxygen isotope ratio determination. Major and trace element concentration measurements were performed in the SARM (Nancy, France) and listed in Table 1. U-Th-Pb isotopic data on zircons were obtained at the Laboratoire Magmas & Volcans (France) by LA-ICPMS. The analyses involved the ablation of minerals with a Resonetics M-50 laser system operating at a wavelength of 193 nm. Spot diameters of 20 µm were associated to repetition rates of 3 Hz and fluency of 2.5 J/cm². The ablated material was carried in helium and then mixed with nitrogen and argon before injection into the plasma source of a Thermo Element XR Sector Field high-resolution ICP-MS. The analytical method for isotope dating with LA-ICPMS is similar to that reported in previous studies (Hurai et al., 2010; Paquette et al., 2014; Mullen et al., 2018). Data are corrected for U-Pb fractionation during laser sampling and for instrumental mass bias by standard bracketing with repeated measurements of the GJ-1 zircon standard (Jackson et al., 2004). The reproducibility and accuracy of the corrections were controlled by repeated analyses of the 91500 zircon standard (Wiedenbeck et al., 1995) treated as unknown. Data reduction was carried out with the GLITTER® software package (Van Achterbergh et al., 2001). The calculated ratios were exported and Concordia ages and diagrams were generated using Isoplot/Ex v. 2.49 software package (Ludwig, 2001). The concentrations of U, Th and Pb were calibrated relative to the certified contents of the GJ-1 zircon standard (Jackson et al., 2004). In the case of the Variscan granite, the zircon analytical results were projected on ²⁰⁷Pb/²⁰⁶Pb ²³⁸U/²⁰⁶Pb versus diagrams (Tera and Wasserburg, 1972), where the analytical points plot along a mixing line between the common Pb composition at the upper intercept and the zircon age at the lower intercept. This method is commonly used to date Phanerozoic zircons using in situ techniques (Mullen et al., 2018). The analytical data are provided in Table 1. In the text, table and figures, all uncertainties on isotope ratios and ages are quoted at the 2σ level.

Oxygen isotopes were measured by laser fluorination at the stable isotope geochemistry lab at the IPGP (France). Bulk zircon crystals (0.4-1mg) were run between UWG2 standards (δ^{18} O=5.75‰) on which the reproducibility is <0.1‰.

Strontium and Neodymium isotopic ratios were measured on the whole rocks at the Laboratoire Magmas et Volcans (France). The isotopic ratios were measured on a Thermo-Finnigan Triton mass spectrometer. The reproducibility of the analytical method is ± 0.000012 for ⁸⁷Sr/⁸⁶Sr based on replicates of the NBS987 international standard and ± 0.000006 for ¹⁴³Nd/¹⁴⁴Nd based on replicates of the JnDi-1 reference material.

4.2. Major and trace elements

As illustrated in Fig. 6, the so-called Flamanville 'granite' is actually a granodiorite (at the limit with monzodiorite). One of the best ways to compare granitoids from their major element compositions is based on their aluminous and alkaline affinities. The molecular $Al_2O_3/$

known (CaO+Na₂O+K₂O), A/CNK, as testifies to metaluminous and peraluminous affinity when <1 and >1 respectively. The molecular Al₂O₃/(Na₂O+K₂O), known as A/ NK, reveals peralkaline compositions when <1. The Variscan granitoids from the Armorican Massif show a continuous evolution from Type 1 to Type 5. Indeed, the alkalinity increases (A/NK decreases from 2.2 to 1.5-1) as the composition is evolving from metaluminous to peraluminous (A/CNK increasing from 0.75 to 1.5). The alkalinity and more specifically the aluminous affinity could reflect the importance of a crustal magmatic source as the continental crust, including its pelitic sediment cover, is overall peraluminous due to long-term leaching. Indeed, the long-term erosion and alteration of the continental crust leads overall to a decrease of alkaline element abundances, due to their high solubility in water and to a relative increase in aluminum abundance due to low solubility in water. Therefore, granitoids that show a A/CNK > 1.2 have a dominant crustal origin. As suggested by R. Capdevila (2010) and based on their alkaline index, Type 1, 2 and 3 were generated mainly from mantellic magmatic sources with increasing crustal influence from Type 1 to Type 3, while the Type 4 have both mantellic and crustal magmatic sources and the Type 5 has overwhelmingly a crustal magmatic source.

Fig. 6. Flamanville granitoid modal composition (large white circle; determined by point counting technique on 3 different thin sections) and normative compositions (pink circles; data are from this study and Capdevila (2010)) reported in the Streckeisen diagram.

Fig. 6. Composition modale du granitoïde de Flamanville (cercle blanc ; déterminé par comptage de point sur 3 lames minces différentes) et compositions normatives (points roses ; les données proviennent de cette étude et de Capdevila (2010)) reportés dans le diagramme de Streickeisen.

As illustrated by Fig. 7, the Flamanville granodiorite could be attributed to the Type 2 or Type 3 (KCG; Barbarin, 1999). The Mg/(Fe+Mg) from the granodiorite ranges from <0.1 (ferriferous) up to 0.6 (magnesian; and (Fe+Mg+Ti) *1000 <105; this study and Capdevila, 2010)) which correspond to both Type 2 and Type 3 respectively. Finally, the Flamanville pluton consists of a potassic alkaline to calcalkaline and metaluminous granodiorite with biotite and hornblende, like the Type 2 and Type 3 Variscan granitoids defined by R. Capdevila (2010), corresponding to KCG from Barbarin (1999).

The trace element composition (Table 1) illustrated in Fig. 8 is characterized by a relatively smooth but fractionated spidergram with large Nb and Ta anomalies. This could reflect a metasomatized mantle source, which is expected during collisional magmatism as the mantle has been previously metasomatized by subduction fluids. Other granitoids from the Type 3 display similar pattern but **GÉOLOGIE DE LA FRANCE**, N° 1, 2018 generally with pronounced Ba, Sr and Eu anomalies. These differences could be explained by slightly different magma sources or condition of partial melting but also by different proportion of mineral fractionation during crystallization. While the interpretation of the trace element composition would require further investigation, it is clear in terms of trace element composition that Flamanville and Type 3 granitoids have intermediate composition between Type 1 (mainly mantellic source) and Type 5 (crustal source).

Fig. 7. Flamanville granodiorite compared to the five different types of Variscan granitoids in the Armorican Massif, in respect to their aluminous and alkaline affinities. Dataset are from the R. Capdevila compilation (2010) except for the Flamanville dataset from this study. Type 1: ACG; Type 2: Mg-KCG; Type 3: Fe-KCG; Type 4: CPG; Type 5: MPG.

Fig. 7. La granodiorite de Flamanville comparée aux cinq différents types de granitoïdes du Massif armoricain en fonction de leurs affinités alumineuses et alcalines. Les données proviennent de la compilation de R. Capdevila (2010) et de cette étude. Type 1: ACG ; Type 2 : Mg-KCG ; Type 3 : Fe-KCG ; Type 4 : CPG ; Type 5: MPG.

	(Wt.%)
SiO ₂	66,5
AI_2O_3	15,4
Fe_2O_3	3,02
MgO	2,18
CaO	3,19
Na ₂ O	4,45
K ₂ O	3,61
TiO ₂	0,47
P_2O_5	0,20
MnO	0,05
Sum	99,1

Table 1. Major and trace element composition of the Flamanville granodiorite from this study. The location of the analyzed sample is indicated in Fig. 2.

Tableau 1. Composition en éléments majeurs et traces de la granodiorite de Flamarville de cette étude. La localisation de l'échantillon analysé est indiquée sur la Fia. 2.

1		
		(ppm)
	Cs	5,70
	Rb	144
	Ва	892
	Th	28,3
	U	7,70
	Nb	12,1
	Та	0,90
	La	69,3
	Ce	121
	Pb	11,6
	Sr	868
	Nd	40,3
	Sm	5,40
	Zr	250
i-	Hf	6,60
n d	Eu	1,34
	Gd	3,74
4- 7-	Tb	0,45
a la	Dy	2,17
	Y	10,0
	Ho	0,40
	Er	0,98
	Yb	0,98
	Lu	0,15

Fig. 8. Flamanville granodiorite comparison with the other types of Variscan granitoids from the Armorican Massif (no data are available for Type 2) in respect to trace elements. Dataset are from the R. Capdevila compilation (2010) except for the Flamanville dataset (this study). The primitive mantle normalization is based on values from S.S. Sun and W.F. McDonough (1989). Type 1: ACG; Type 2: Mg-KCG; Type 3: Fe-KCG; Type 4: CPG; Type 5: MPG.

Fig. 8. Comparaison des éléments traces de la granodiorite de Flamanville et des autres types de granitoïdes Varisques du Massif Armoricain (pas de données existantes pour le Type 2). Les données proviennent de la compilation de R. Capdevila (2010) et de cette étude. La normalisation au manteau primitif est basée sur les valeurs de S.S. Sun and W.F. McDonough (1989). Type 1 : ACG ; Type 2 : Mg-KCG ; Type 3 : Fe-KCG ; Type 4 : CPG ; Type 5 : MPG.

4.3. Isotopic composition

Oxygen isotope ratios on zircon crystals from the Flamanville granodiorite were measured and led to a δ^{18} O = 5.79 ± 0.25‰. It is noteworthy that the 0.25‰ reproducibility is higher than what is measured on silicate standards (<0.1‰), which could be explained by the low amount of zircon analysed (as low as 0.4 mg for one analysis) and possibly a relatively heterogeneous composition in a single crystal and between them. *In situ* O-isotopes measurement should be the next step in determining the detailed composition of zircon crystals in the Flamanville pluton.

Fig. 9. Oxygen isotopic composition of zircon crystals from Flamanville granodiorite compared to different origin of zircon crystals (values are from O'Neii and Chappell, 1977; Eiler, 2001; Cavosie *et al.*, 2005; Bindeman, 2008; Couzinié *et al.*, 2016). Type 4 and 5 are from whole rock analyses (Euzen, 1993).

Fig. 9. Composition des isotopes de l'oxygène de cristaux de zircons provenant de la granodiorite de Flamanville comparée à différentes origines de cristaux de zircons (valeurs de O'Neil and Chappell, 1977 ; Eiler, 2001 ; Cavosie et al., 2005 ; Bindeman, 2008 ; Couziné et al., 2016). Les Types 4 et 5 proviennent d'analyses en roche totale (Euzen, 1993).

GÉOLOGIE DE LA FRANCE, Nº 1, 2018

O-isotope compositions of zircon crystals from pure mantellic magma is expected to be 5.3 ± 0.3 (e.g. Bindeman, 2008 and references therein; Fig. 9). Lower values reflect magmatic sources that have been affected by hydrothermalism at high temperature (>300°C) and higher values reflect high- δ^{18} O supracrustal sources such as metasediments or any source that has been affected by hydrothermalism at low temperature (<300°C; Fig. 9). Therefore, the slightly high value of 5.79 ± 0.25‰ measured in Flamanville granitoid compared to the mantellic value could most likely reflects a dominant mantellic source affected by some modest crustal signature. The high $\delta^{18}O$ values measured in zircon crystals from post collisional KCG from the French Massif Central are also explained by an interaction between the mantle peridotitic source and subducted crustal material or fluids/melts released from them (Couzinié et al., 2016). It is noteworthy that δ¹⁸O obtained on whole rock samples from Type 4 and 5 granitoids (9-14‰; Euzen, 1993) are in agreement with a crustal origin (partial melting of metasediments).

Age corrected ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd initial isotope compositions are 0.70519 and 0.51218, respectively. Hence, the granodiorite has $\varepsilon_{Sr(318Ma)} = + 1.47$ and $\varepsilon_{Nd(318Ma)} = - 0.97$, indicating isotopic ratios close to the contemporaneous Variscan primitive mantle values, in agreement with a mantellic origin. However, based on Sr- and Nd-isotopes only, it is ambiguous to draw any clear conclusion on the magma source. Indeed, a continental crust that was 1.2-1.5 Ga old during the Variscan history (~318Ma) would have had comparable isotopic values to the mantle and therefore to the initial Flamanville granodiorite and any other Variscan KCG and vaugnerites (mafic magma associated to KCG; Moyen et al., 2017). Therefore, while the Sr- and Ndisotopes composition is in agreement with a mantellic origin, a crustal influence cannot be ruled out based on these isotopes only.

In addition to major and trace elements, the O- Sr- and Nd-isotopic compositions of the Flamanville granodiorite is in agreement with a mantellic origin, however we cannot rule out any mantle source metasomatism by crustal fluids/melts during the subduction of the continental crust at the first stage of the collision, at least 30 Ma before the partial melting that initiated the formation of the Flamanville granodiorite, or some crustal contamination/assimilation during the mantellic magma emplacement into the crust.

4.4. In situ zircon U-Pb dating

4.4.1. Flamanville granodiorite

Zircons from the granodiorite show oscillatory zoning (Fig. 10) and a systematically high Th/U ratio of 0.5 ± 0.2 , that is usually observed in magmatic zircon crystals (Kirkland *et al.*, 2015). The U content may reach high values, up to 1700 ppm and exceptionally for one spot, 7500 ppm and 12800 ppm of U and Th, respectively. Nevertheless, both cathodoluminescence images and U-Pb dating results do not evidence any metamictization of the

zircon grains. The 31 analysed spots yield a lower intercept age of 318.1 ± 1.5 Ma (MSWD= 0.37; Fig. 12; Appendix 2). As mentioned above, the only 4 dating obtained by Rb-Sr and K-Ar on biotite crystals show ages from 299 to 316 Ma. Age inferred from biotite analyses reflects when the pluton reached the temperature of 250-400°C during its cooling (closing temperatures of the Rb-Sr and K-Ar isotopic systems in biotite). Therefore, the high closing temperature of the U-Pb system in zircon makes this dating method the

Fig. 10. Catodoluminescence images of selected zircons from (a) Flamanville Granodiorite and corresponding LA-ICP-MS ²⁰⁶Pb/²³⁸U spot ages in Ma and (b) from l'Anse du CuI-Rond gneiss and corresponding ²⁰⁷Pb/²⁰⁸Pb ages in Ma. The orange value is the ²⁰⁶Pb/²³⁸U age of the rim of the B05c zircon. Errors are 20. White scale bars are 10 µm.

Fig. 10. Images en cathodoluminescence des zircons sélectionnés provenant de (a) la granodiorite de Flamanville et áges ²⁰⁶Pb/²³⁰U obtenus en LA-ICP-MS en Ma et provenant des (b) gneiss de l'Anse du Cul-Rond et áges ²⁰⁷Pb/²⁰⁸Pb correspondant en Ma. La valeur orange représente l'áge ²⁰⁶Pb/²³³U de la bordure externe du zircon B05c. Les erreurs sont données à 2c. L'échelle blanche représente 10 μm.

Fig. 11. (a) Age histogram for the granodiorite and (b) corresponding Concordia diagram of F. Tera and G.J. Wasserburg (1972). Error ellipses are 2σ .

Fig. 11. (a) Histogramme des âges de la granodiorite de Flamanville et (b) diagramme Concordia de F. Tera and G.J. Wasserburg (1972) correspondant. Les erreurs sont données à 2π

Fig. 12. (a) Concordia diagram for LA-ICP-MS U–Th–Pb analyses on zircons from the gneiss and (b) magnification of (a) for concordant zircons. Error ellipses are 2σ .

Fig. 12. (a) Diagramme Concordia pour les analyses U–Th–Pb sur zircons au LA-ICP-MS provenant des gneiss de l'Anse du Cul-Rond et (b) agrandissement de (a) pour les zircons concordants. Les erreurs sont données à 2σ.

best estimate of the magma emplacement while the biotite dating gives clue on the magma cooling history. The lack of any inherited zircon core can also be noticed. It implies that crustal melting or assimilation that could lead to zircon crystals incorporation into the magma during its emplacement is limited.

4.4.2. Gneiss from L'Anse du Cul-Rond

Zircon crystals from the gneiss show also a fine oscillatory zoning (Fig. 10) and a Th/U ratio ranging from 0.11 and 0.45 regardless of the amounts of U and Th. Only one spot performed in the grain B05c display a Th/U ratio below 0.01 corresponding to a low Th content. 21 spots provide concordant analyses which yield a Concordia age at 2043.1 ± 3.8 Ma (MSWD 0.96; Fig. 11; Appendix 3) while the whole dataset of 29 analyses allow to calculate a Discordia line with a similar upper intercept age of 2046 ± 5 Ma (Fig. 12). One analysis (Zircon B05c) is concordant at 547 ± 15 Ma. The obtained Paleoproterozoic age of 2043 Ma is interpreted as the crystallisation age for the granite protolith, while the 547 Ma age obtained on a single zircon crystal is comparable to age of the Cadomian metamorphism that affected the whole region (e.g. Chantraine et al., 1988; Le Corre et al., 1991; Ballèvre et al., 2013 for a review). The protolith age is in agreement with the previous SHRIMP ages (Inglis et al., 2004). The Neoproterozoic age reported in our study is significantly younger than that calculated by J.D. Inglis et al. (2004) from three zircon tips.

5. The Flamanville granodiorite in the Variscan history of the Armorican Massif

The increase of peraluminous composition from Type 1 (ACG) to Type 5 (MPG) Variscan granitoids could indicate an increase of the role of the continental crust in the Variscan magmatism. As discussed above, the Flamanville granodiorite corresponds to Type 2 and Type 3 (KCG) and seems to have a mantellic origin with a limited crustal signature. If we intend to discuss the origin of magmatism in the AM during the Variscan history, the Type 1 granitoids that are mantellic in origin, were most likely generated by partial melting of the mantle wedge in the pre-Variscan subduction at about 380-370 Ma (Fig. 13). As well illustrated by the Fig. 13, all the granitoids from Types 2, 3, 4 and 5 are contemporaneous (~300-320 Ma) with very different origins from pure crustal to mantellic. The intensification of magmatism between 320 and 300 Ma in the AM could be attributed to a slab break-off at about 350-330 Ma (Ballèvre et al., 2013 and references therein). Indeed a slab break-off leads to an upward asthenospheric flux that can, as a heat source and by inducing an uplift, trigger the lithospheric partial melting. Furthermore, as discussed by Bernard-Griffiths et al. (1985) and Ballouard et al. (2015), this scenario could also explain the increase of more radiogenic crustal and supracrustal components in the magmatic source of these granitoids from North to South as indicated

by initial Sr and Nd isotope ratios in granitoids along the South Armorican Shear Zone.

Fig. 13. Evolution of the granitoid magmatic sources during the Variscan orogeny in the Armorican Massif. The slab break-off at about 350-330 Ma is discussed in Ballèvre *et al.* (2013; and references therein). It is noteworthy that Type 1, 3, 4 and 5 have been dated by precise U-Pb dating on zircon while Type 2 has been dated by Rb-Sr method on whole rock, which could explain the wider age range (see text for details). Type 1: ACG; Type 2: Mg-KCG; Type 3: Fe-KCG; Type 4: CPG; Type 5: MPG.

Fig. 13. Évolution des sources magmatiques des granitoïdes durant l'orogenèse varisque dans le Massif armoricain. Le détachement du panneau lithosphérique à environ 350-340 Ma est discuté dans Ballèvre et al. (2013; et références incluses). Il est important de noter que les Types 1, 3, 4 et 5 ont été datés par des méthodes précises (datations U-Pb sur zircon) alors que les Types 2 ont été datés par la méthode Rb-Sr sur roche totale, ce qui pourrait expliquer la gamme plus large d'âges enregistrée (voir texte pour plus de détails). Type 1: ACG ; Type 2 : Mg-KCG ; Type 3 : Fe-KCG ; Type 4 : CPG ; Type 5 : MPG.

6. Conclusion

The well-known Flamanville 'granite' is actually a granodiorite (at the limit with monzodiorite) and was formed at 318.1 ±1.5 Ma, which is older than previously estimated. The Flamanville granitoid is petro-geochemically close to Variscan Type 2 and Type 3 (KCG) metaluminous granitoids from the Armorican Massif.

Major and trace elements as well as Sr- Nd- and Oisotope compositions tend to indicate that the magmatic source is mantellic with a low crustal influence. This crustal influence could come from mantle metasomatism by crustal fluids/melts during the subduction of the continental crust at the first stage of the collision, at least 30 Ma before the partial melting that initiated the Flamanville granodiorite occurred, or from crustal contamination/assimilation during the mantellic magma emplacement into the crust.

The age of the Flamanville pluton basement was obtained on zircon crystals from the Anse du Cul-Rond gneiss that we dated around 2045 Ma. The same zircon crystals were affected by Cadomian metamorphism at 547 Ma. The lack of inherited zircon cores in Flamanville granodiorite is consistent with a modest crustal influence on its genesis.

Finally, including the Flamanville pluton emplacement, the Variscan magmatism in the AM that mostly took place between 320 and 300 Ma, could have been triggered by a slab break-off at 330-350 Ma. This scenario could explain the intensification of granitoid genesis in the AM as well as the magmatic source transition from mantellic to crustal from North to South. In order to confirm this, it would be necessary to date precisely zircon crystals from the AM granitoids by *in situ* U-Pb method. This would help to better constrain the chronology of Variscan events in the region and even the French geological history from 2 Ga to 300 Ma.

Acknowledgments

The first author thanks François Baudin for showing him the Flamanville geological site at the first place and Lucy Whiteley for proofreading the manuscript. We are also grateful to Chantal Bosq and Delphine Auclair for Sr and Nd isotopic analyses, Pierre Cartigny for the accessibility to his lab for O-isotopes analyses.

REFERENCES

- Abréal A. (2009) L'auréole du granite de Flamanville et ses grenats : métamorphisme de contact. J. Mineral., 111–134.
- Adams C.J.D. (1976) Geochronology of the Channel Islands and adjacent French mainland. J. Geol. Soc., 132, p. 233–250. doi: 10.1144/gsjgs.132.3.0233
- Ballèvre M. (2016) Une histoire géologique du Massif armoricain. Géochronique, 16-46.
- Ballèvre M., Bosse V., Dabard M.-P., Ducassou C., Fourcade S., Paquette J.-L., Peucat, J.-J., Pitra P. (2013) Histoire Géologique du massif Armoricain : Actualité de la recherche. Bulletin de la Société Géologique et Minéralogique de Bretagne, Soc, 5–96.
- **Ballouard C.** (2016) Origine, évolution et exhumation des leucogranites peralumineux de la chaîne hercynienne armoricaine : implication sur la métallogénie de l'uranium. Doctoral dissertation, Université Rennes 1, 308 p.
- Ballouard C., Boulvais P., Poujol M., Gapais D., Yamato P., Tartèse R., Cuney M. (2015) Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France. Lithos, 220–223, 1–22. doi: 10.1016/j.lithos.2015.01.027
- Ballouard C., Poujol M., Boulvais P., Zeh, A. (2017) Crustal recycling and juvenile addition during lithospheric wrenching: The Pontivy-Rostrenen magmatic complex, Armorican Massif (France), Variscan belt. Gondwana Research, 49, 222-247 doi: 10.1016/j.gr.2017.06.002.
- **Barbarin B.** (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46, 605-626.
- Bernard-Griffiths J., Peucat J.-J., Sheppard S., Vidal P. (1985) Petrogenesis of Hercynian leucogranites from the southern Armorican Massif: contribution of REE and isotopic (Sr, Nd, Pb and O) geochemical data to the study of source rock characteristics and ages. Earth Planet. Sci. Lett., 74, 235–250. doi: 10.1016/0012-821X(85)90024-X
- **Bindeman I.** (2008) Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Rev. Mineral. Geochem., 69, 445–478. doi: 10.2138/rmg.2008.69.12
- Brun J.-P., Gapais D., Cogne J.-P., Ledru P., Vigneresse, J.-L. (1990) The Flamanville granite (northwest France): an unequivocal example of a syntectonically expanding pluton. Geological journal, 25, 271–286.
- Capdevila R. (2010) Les granites varisques du Massif armoricain. Bull. Société Géologique Minéralogique Bretagne, 7, 1-52.
- Caroff M., Labry C., Le Gall B., Authemayou C., Grosjean D.-B., Guillong M. (2015) Petrogenesis of late-Variscan high-K alkali-calcic granitoids and calc-alkalic lamprophyres: The Aber-Ildut/North-Ouessant complex, Armorican Massif, France. Lithos, 238, 140–155. doi: 10.1016/j.lithos.2015.09.025
- Cavosie A.J., Valley J.W., Wilde S.A., E.I.M.F (2005) Magmatic d18O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett., 235, 663–681.
- Chantraine C., Chauvel J-J., Bale P., Denis E., Rabu D. (1988) Le Briovérien (Protérozoïque supérieur à terminal) et l'orogenése cadomienne en Bretagne (France) Bull. Soc. géol. France, 5, 815-829.
- Couzinié S., Laurent O., Moyen J.-F., Zeh A., Bouilhol P., Villaros A. (2016) Post-collisional magmatism: Crustal growth not identified by zircon Hf–O isotopes. Earth Planet. Sci. Lett. 456, 182–195, doi:10.1016/j.epsl.2016.09.033.
- Cuney M., Stussi J.-M., Brouand M., Dautel D., Michard A., Gros Y., Poncet D., Bouton P., Colchen M., Vervialle J.-P. (1993) Géochimie et géochronologie U/Pb des diorites quartziques du Tallud et de Moncoutant: nouveaux arguments pour une extension de la "Ligne Tonalitique Limousine" en Vendée. C. R. Acad. Sci., Série 2, 1383–1390.
- **Dubois C.** (2014) Durée de construction, refroidissement et exhumation de l'intrusion composite de Ploumanac'h (Massif Armoricain): contraintes géochronologiques et thermochronologiques p. 31. Master thesis, Université Rennes 1, 31 p.
- Eiler J. (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Walley J.W., Cole D.R. (eds) Reviews in Mineralogy and geochemistry. The mineralogical society of America, Washington, pp. 319–364
- **Euzen T.** (1993) Pétrogenèse des granites de collision post-épaississement : Le cas des granites crustaux et mantelliques du complexe de Pontivy-Rostrenen (Massif Armoricain, France). Doctoral dissertation, Université Rennes 1, 350 p.
- Faure M., Bé Mézéme E., Duguet M., Cartier C., Talbot J-Y. (2005) Paleozoic tectonic evolution of medio-europa from the example of the French massif central and massif armoricain. J. Virtual Expl., 19, 26 p.
- Graindor M.-J., Wasserburg G.J. (1962) Determinations d'âges absolus dans le Nord du Massif armoricain. C. R. Séances Hebd. Acad. Sci., 3875–3877.

- Hurai V., Paquette J.-L., Huraiová M., Konečný P. (2010) U–Th–Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-Carpathian back-arc basin. J. Volc. Geotherm. Res., 198, 275–287. doi: 10.1016/j.jvolgeores.2010.09.012
- Inglis J.D., Samson S.D., D'Lemos R.S., Hamilton M. (2004) U–Pb geochronological constraints on the tectonothermal evolution of the Paleoproterozoic basement of Cadomia, La Hague, NW France. Precambrian Res., 134, 293–315. doi: 10.1016/j.precamres.2004.07.003
- Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol., 211, 47–69. doi: 10.1016/j.chemgeo.2004.06.017
- Kirkland C. L., Smithies R. H., Taylor R. J. M., Evans N., McDonald B. (2015) Zircon Th/U ratios in magmatic environs. Lithos, 212, 397-414.
- Le Corre C., Auvray B., Ballèvre M., Robardet M. (1991) Le massif Armoricain. Sci. Géol. Bull., 44, 31-103.
- Le Gall B., Authemayou C., Ehrhold, A., Paquette J.-L., Bussien D., Chazot G., Aouizerat A., Pastol Y. (2014) LiDAR offshore structural mapping and U/Pb zircon/monazite dating of Variscan strain in the Leon metamorphic domain, NW Brittany. Tectonophys., 630, 236–250. doi: 10.1016/j.tecto.2014.05.026
- Ludwig K.L. (2001) Using Isoplot/EX, v2. 49, a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Centre Spec. Publ.
- Marcoux E., Lebrun E., Bages E. (2012) Le skarn à magnétite tardi-hercynien de Diélette (Massif armoricain, France). Géol. France, 2, 5–25.
- Moyen J.-F., Laurent O., Chelle-Michou C., Couzinié S., Vanderhaeghe O., Zeh A., Villaros A., Gardien V. (2017) -Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos, 277, 154–177, doi:10.1016/j.lithos.2016.09.018.
- Mullen E.K., Paquette J.-L., Tepper J.H., McCallum I.S. (2018) Temporal and spatial evolution of the Northern Cascade Arc magmatism revealed by LA-ICP-MS U-Pb zircon dating. Canadian J. Earth Sci., 55, 443-462. doi: 10.1139/cjes-2017-0167.
- O'Neil J.R., Chappell B.W. (1977) Oxygen and hydrogen isotope relations in the Berridale batholith. J. Geol. Soc., 133, 559– 571. doi: 10.1144/gsjgs.133.6.0559
- Paquette J.-L., Piro J.-L., Devidal J.-L., Bosse V., Didier A. (2014) Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas: application to radiometric dating of U-Th-bearing minerals. Agilent ICP-MS journal, 58, 4–5.
- Peucat J.-J., Auvray B., Hirbec Y., Calvez J.-Y. (1984) Granites et cisaillements hercyniens dans le Nord du Massif Armoricain; geochronologie Rb-Sr. Bull. Soc. Geol. France, (7), XXVI, 1365–1373. doi: 10.2113/gssgfbull.S7-XXVI.6.1365
- Sun S.S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: Implications for the mantle composition and processes. In: Saunders A.D., Norry M.J. (eds), Magmatism in the ocean basins. Geological Society of London, Special Publications, London, pp. 313–345.
- Tartèse R., Poujol M., Ruffet G., Boulvais P., Yamato P., Košler J. (2011a) New U-Pb zircon and 40Ar/39Ar muscovite age constraints on the emplacement of the Lizio syn-tectonic granite (Armorican Massif, France). C. R. Geoscience, 343, 443 –453. doi: 10.1016/j.crte.2011.07.005
- Tartèse R., Ruffet G., Poujol M., Boulvais P., Ireland T.R. (2011b) Simultaneous resetting of the muscovite K-Ar and monazite U-Pb geochronometers: a story of fluids: Geochronometers resetting by fluids. Terra Nova, 23, 390–398. doi: 10.1111/j.1365-3121.2011.01024.x
- Tera F., Wasserburg G.J. (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet. Sci. Lett., 14, 281–304. doi: 10.1016/0012-821X(72)90128-8
- Thiéblemont D., Guerrot C., Simien F., Zammit C. (2017) Une compilation des âges radiochronologiques publiés antérieurement à 2016 sur le Massif armoricain. Inventaire et mise en forme des données, perspectives pour des acquisitions futures. Géol. France, 1, 27-46.
- Van Achterbergh E., Ryan C.G., Jackson S.E., Griffin W.L. (2001) Data reduction software for LA-ICP-MS. Earth Sci. Appl. Min. Assoc Can. Short Course Ser., 239–243.
- Vidal P. (1980) L'évolution polyorogénique du massif Armoricain : apport de la géochronologie et de la géochimie isotopique du strontium. Mém. Soc. Géol. Mineral. Bretagne, 21.
- Wiedenbeck M., Allé, P., Corfu F., Griffin W.L., Meier M., Oberli F., Quadt A.V., Roddick J.-C., Spiegel W. (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19, 1–23. doi: 10.1111/j.1751-908X.1995.tb00147.x

Petro-geochemistry	y and zircon	U-Pb dat	ting, Flama	inville grano	diorite
Petro-geochemistry	y and zircon	U-Pb dat	ting, Flama	inville grano	diorite

Appendix 1.	Composition of some representative minerals in weight% oxides

Nimero	Mineral & Com-	Sin 2	TiO2	AI2O	FeO	OnM	O₀M	CaO	Na2O	K2O	Cr20	P205	ц	.	Total
	ment			ß	Tot		20)))))	0)	3			5	
4/1.	Pl in perthite	66,95	0,02	19,84	0,03	0,01	0,01	0,11	11,38	0,18	0,02	0,01	00'0	00'0	98,58
10 / 1.	Ы	63,72	0,04	22,21	0,27	0,06	0,00	3,16	10,14	0,14	00'00	0,06	00'0	0,00	99,81
13/1.	Small PI	64,50	0,03	22,37	0,17	0,02	0,00	3,05	9,84	0,20	0,04	0,04	00'0	0,00	100,26
33/1.	Ы	65,51	0,01	21,88	0,11	0,00	0,00	2,90	9,84	0,12	0,00	00'0	0,12	00'00	100,49
48/1.	Ы	67,20	0,01	20,92	0,13	0,01	0,03	1,09	10,53	0,26	0,02	0,03	0,00	0,01	100,25
3/1.	perthitic Kfd	63,76	00'0	18,70	0,09	00'0	0,02	00'0	1,57	14,53	0,01	00'0	0,00	0,01	98,73
6/1.	Kfd	65,19	0,02	18,63	0,07	0,00	0,00	0,05	1,67	14,00	0,00	00'0	00'0	0,02	99,65
43/1.	Kfd	65,35	00'0	18,74	0,30	0,00	0,00	0,01	1,19	14,12	00'00	00'0	00'0	00'0	99,72
58/1.	Kfd	65,68	0,03	18,40	0,08	0,00	0,00	00'0	0,82	15,15	0,02	0,03	00'0	0,00	100,24
77/1.	Kfd	65,23	0,01	18,13	0,82	0,02	0,00	00'0	1,03	14,65	00'00	00'0	0,02	0,00	99,91
1/1.	Bt	37,91	4,21	13,22	16,46	0,22	14,27	0,01	0,08	9,38	0,09	00'0	0,24	0,07	96,25
9/1.	Bt	38,05	3,61	13,16	15,93	0,20	14,99	0,01	0,10	9,45	0,03	00'0	0,49	0,06	96,15
35 / 1 .	Bt	38,21	4,58	13,07	16,40	0,18	13,39	0,01	0,01	9,40	0,05	0,06	0,88	0,00	96,24
38/1.	Bt	38,26	4,25	13,44	16,43	0,18	13,64	0,12	60'0	9,08	0,17	0,01	0,81	0,02	96,50
47/1.	Bt	38,93	4,04	13,38	15,99	0,25	14,05	0,02	0,01	9,43	0,04	0,05	0,70	00'0	96,90
15 / 1 .	Amp	50,73	0,47	3,56	11,71	0,34	16,04	12,14	0,89	0,35	0,35	0,19	0,05	0,03	96,95
17/1.	Amp	51,44	0,46	3,20	11,06	0,31	16,38	11,94	0,72	0,27	0,37	0,12	0,07	0,01	96,53
61/8.	Amp	53,19	0),60	3,36	11,51	0,36	15,63	12,06	0,73	0,31	00'0	00'0	0,22	00'0	97,98
61/28.	Amp	45,87	1,60	8,11	14,77	0,32	12,36	11,82	1,60	0,78	0,09	0,05	0,35	00'0	97,74
61/33.	Amp	44,32	1,66	8,45	15,41	0,35	11,81	11,70	1,71	0,98	0,04	0,03	0,34	0,01	96,82

GÉOLOGIE DE LA FRANCE , Nº 1, 2018 -

Appendix 2. LA-ICP-MS zircon U–Th–Pb isotope data for the Flamanville granodic	orite
--	-------

Flaman	ille Grano	diorite				2 g error		2 g error	Age (Ma)	2 g error
Spot	Pb (ppm)	Th (ppm)	U (ppm)	Th/U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²³⁵ U	$^{206}P_{b}/^{238}U$	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Pb/ ²³⁸ U
A01 c	74	743	1342	0,55	0,3755	0,0116	0,05086	0,00141	319,8	8,6
A02 c	99	544	1231	0,44	0,3798	0,0154	0,05064	0,00144	318,4	8,8
A03 c	42	400	1/1	0,52	0,3695	0,0117	0,05057	0,00138	318,0	<mark>8,5</mark>
A04 c	50	530	896	0,59	0,3836	0,0120	0,05146	0,00141	323,5	8,7
A06 c	95	1013	1714	0,59	0,3899	0,0123	0,05056	0,00138	317,9	<mark>8,5</mark>
A08 c	62	581	1157	0,50	0,3678	0,0114	0,05073	0,00138	319,0	8,6
B01 c	18	105	345	0,31	0,3742	0,0130	0,05126	0,00141	322,3	8,7
B02 c	91	803	1640	0,49	0,4296	0,0140	0,05089	0,00141	320,0	8,6
B03 c	83	876	1494	0,59	0,3674	0,0124	0,05066	0,00141	318,6	8,6
B05 c	81	614	1503	0,41	0,3932	0,0140	0,05139	0,00144	323,1	8°8
B06 c	82	746	1489	0,50	0,4144	0,0125	0,05074	0,00138	319,1	8,5
B08 c	540	12796	7469	1,71	0,3657	0,0107	0,05030	0,00138	316,4	8,4
C01 c	47	400	897	0,45	0,3703	0,0122	0,05058	0,00138	318,1	8,6
C02 c	78	697	1427	0,49	0,4296	0,0139	0,05053	0,00138	317,8	8,6
C04 c	32	269	597	0,45	0,4319	0,0140	0,05028	0,00138	316,2	<mark>8,5</mark>
C05 r	37	238	669	0,34	0,3793	0,0155	0,05064	0,00141	318,5	8,7
C06 r	93	721	1732	0,42	0,3969	0,0121	0,04998	0,00138	314,4	8,4
C07 c	36	224	661	0,34	0,4332	0,0138	0,05102	0,00141	320,8	8,6
C08 c	74	691	1232	0,56	0,5754	0,0181	0,05063	0,00138	318,4	8,6
D02 c	67	578	1229	0,47	0,3731	0,0116	0,05071	0,00138	318,9	8,5
D03 c	77	808	1339	0,60	0,4190	0,0130	0,04992	0,00138	314,0	8,4
D05 c	40	397	692	0,57	0,4744	0,0151	0,05043	0,00138	317,2	8,5
D06 r	52	492	946	0,52	0,3893	0,0123	0,05077	0,00138	319,3	8,6
D07 r	11	670	1233	0,54	0,5057	0,0156	0,05058	0,00138	318,1	8,5
E01 c	78	611	1332	0,46	0,6014	0,0190	0,05050	0,00138	317,6	8,5
E02 c	40	361	763	0,47	0,3786	0,0130	0,04930	0,00135	310,2	8,4
E03 r	99	677	1063	0,64	0,6335	0,0206	0,05043	0,00138	317,2	8,6
E04 r	17	756	1340	0,56	0,4990	0,0158	0,05028	0,00138	316,2	8,5
E06 r	39	362	723	0,50	0,3662	0,0140	0,05023	0,00141	316,0	8,6
E07 c	50	467	910	0,51	0,4030	0,0148	0,05064	0,00141	318,4	8,6
E08 r	51	435	948	0,46	0,3829	0,0142	0,05058	0,00141	318,1	8,6

Petro-geochemistry and zircon U-Pb dating, Flamanville granodiorite

Spot Pb ppn T ppn U ppn Th/U $^{20}P_{0}/^{23}V_{1}$	Anse du	cul-rond G	neiss				2 g error		2 g error	Age (Ma)	2 g error
A01 71 50 191 0.26 6,196 0,183 0,3587 0,0097 2033 A02 6 19 168 0,11 6,454 0,185 0,3704 0,0100 2035 A03 7 5 193 0,11 6,454 0,185 0,3607 0,0007 2035 A05 16 13 12 135 0,11 6,444 0,185 0,3607 0,0003 2035 A06 107 28 313 0,09 5,852 0,116 0,3736 0,0101 2035 A07 97 107 238 0,446 0,137 0,0101 2035 B01 76 51 197 0,226 6,416 0,187 0,3736 0,0101 2035 B01 173 0,23 0,236 0,177 0,3591 0,0001 2035 B01 173 0,23 0,375 0,0101 2035 2047 B0	Spot	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pt	²⁰⁷ Pb/ ²⁰⁶ Pb
A0.2 6.2 19 168 0,11 6,454 0,189 0,3704 0,0100 2048 A0.1 14 4.2 389 0,11 6,449 0,185 0,3704 0,0100 2035 A0.5 14 4.2 389 0,11 6,440 0,185 0,3704 0,0100 2035 A0.6 17 0.17 0.23 0,455 6,440 0,187 0,3704 0,0100 2035 A076 97 107 238 0,45 6,440 0,187 0,3704 0,0100 2035 B016 76 31 174 0,22 6,446 0,177 0,3704 0,0101 2055 B016 75 31 174 0,18 6,501 0,187 0,3704 0,0101 2055 B016 173 0,23 0,235 0,177 0,235 0,0101 2055 B036 77 31 171 0,18 0,3740 0,0101	A01 c	71	50	191	0,26	6,196	0,183	0,3587	0,0097	2033	57
A03 76 55 195 0.28 $6,425$ 0.188 0.3714 0.0100 2035 A04 144 42 389 0.111 $6,403$ 0.185 0.3671 0.0100 2035 A05 107 28 313 0.09 5.822 0.187 0.3704 0.0002 2008 A06 107 28 311 107 5.822 0.187 0.3714 0.002 2008 2027 B01c 66 31 174 0.18 0.3716 0.0101 2052 B01c 47 23 172 0.22 $6,501$ 0.187 0.3726 0.0010 2052 B01c 47 23 174 0.17 0.222 $6,501$ 0.187 0.3726 0.0010 2052 B01c 47 23 1174 0.18 0.3726 0.0010 2052 B01c	A02 c	62	19	168	0,11	6,454	0,189	0,3704	0,0100	2048	57
A04r 144 42 389 0,11 6,403 0,185 0,3701 0,0100 2035 A05c 46 15 125 0,12 6,204 0,185 0,3701 0,0093 2025 A07c 97 107 238 0,45 6,469 0,187 0,3734 0,0101 2035 B01c 76 31 177 0,226 6,4469 0,187 0,3734 0,0101 2052 B01c 76 31 174 0,18 6,501 0,187 0,3736 0,0101 2053 B03c 66 31 174 0,18 6,501 0,187 0,3730 0,0101 2053 B03c 47 23 172 0,19 6,501 0,187 0,3730 0,0101 2053 B03c 47 23 172 0,19 6,206 0,183 0,3740 0,0101 2054 B03c 17 23 173 6,493	A03 c	76	55	195	0,28	6,425	0,188	0,3714	0,0100	2035	57
A05 46 15 125 0,11 6,204 0,185 0,3607 0,0098 2025 A06 107 28 313 0,09 5,852 0,169 0,3434 0,0092 2008 A07 97 107 238 0,45 6,469 0,117 0,3704 0,0101 2052 B01c 76 51 195 0,226 6,529 0,187 0,3716 0,0101 2053 B01c 175 907 0,228 6,501 0,187 0,3740 0,0101 2053 B01c 47 23 122 0,17 0,28 0,0101 2053 B01c 47 23 122 0,17 0,187 0,3740 0,0101 2054 B01c 47 23 120 0,17 6,361 0,182 0,3010 2014 B01c 47 23 120 0,17 6,361 0,182 0,3010 2014 <td< th=""><th>A04 r</th><th>144</th><th>4</th><th>389</th><th>0,11</th><th>6,403</th><th>0,185</th><th>0,3701</th><th>0,0100</th><th>2035</th><th>56</th></td<>	A04 r	144	4	389	0,11	6,403	0,185	0,3701	0,0100	2035	56
A06c 107 28 313 0.09 $5,852$ $0,187$ $0,3734$ $0,0020$ 2002 A07c 97 107 238 $0,45$ $6,469$ $0,187$ $0,3734$ $0,0100$ 2052 2037 B01c 76 31 177 $0,22$ $6,449$ $0,187$ $0,3730$ $0,0101$ 2052 B01c 125 90 333 $0,27$ $6,501$ $0,187$ $0,3740$ $0,0101$ 2052 B05c 17 233 $0,27$ $6,208$ $0,177$ $0,3591$ $0,0101$ 2054 B05c 17 23 174 $0,17$ $0,2526$ $0,177$ $0,3740$ $0,0101$ 2054 B05c 17 23 120 $0,17$ $0,3740$ $0,0101$ 2054 B05c 17 23 1200 $0,213$ $0,3740$ $0,0101$ 2054 B05c 130 2313	A05 c	46	15	125	0,12	6,204	0,185	0,3607	0,0098	2025	58
A07 97 107 238 0,45 6,469 0,187 0,3704 0,0101 2052 B01c 76 51 195 0,26 6,529 0,187 0,3736 0,0101 2052 B01c 76 51 195 0,26 6,529 0,187 0,3736 0,0101 2053 B03c 66 31 174 0,18 6,501 0,187 0,3736 0,0101 2053 B04c 173 0,23 0,277 6,208 0,177 0,3591 0,009 2034 B06c 47 23 122 0,19 6,526 0,183 0,3716 0,0101 2053 B08c 57 31 100 0,17 6,361 0,183 0,3716 0,0101 2054 B08c 77 23 233 0,17 6,490 0,183 0,3716 0,0101 2054 B08c 77 20 113 6,490 0,185	A06 c	107	28	313	60'0	5,852	0,169	0,3434	0,0092	2008	56
B01c 76 51 195 0,26 6,529 0,118 0,3738 0,0101 2052 B02c 68 39 177 0,22 6,416 0,187 0,3750 0,0101 2037 B03c 66 31 174 0,18 6,501 0,187 0,3750 0,0101 2033 B04c 125 90 333 0,277 6,501 0,187 0,3740 0,0101 2034 B06c 47 23 150 0,273 0,013 0,3740 0,0101 2035 B06c 477 23 152 0,117 6,490 0,118 0,3740 0,0101 2036 B08c 57 33 150 0,217 6,490 0,118 0,3750 0,0100 2034 B08c 77 23 2387 0,013 6,490 0,118 0,3750 0,0100 2034 C01c 130 53 6,490 0,118 0,3750 </th <th>A07 c</th> <th>97</th> <th>107</th> <th>238</th> <th>0,45</th> <th>6,469</th> <th>0,187</th> <th>0,3704</th> <th>0,0100</th> <th>2052</th> <th>56</th>	A07 c	97	107	238	0,45	6,469	0,187	0,3704	0,0100	2052	56
B02 c 68 39 177 0,22 6,416 0,184 0,3730 0,0100 2037 B03 c 66 31 174 0,18 6,501 0,187 0,3730 0,0101 2048 B04 c 125 90 333 0,27 6,208 0,177 0,3571 0,0096 2034 B06 c 47 23 122 0,19 6,526 0,183 0,3740 0,0101 2050 B06 c 47 23 122 0,17 6,536 0,183 0,3740 0,0101 2051 B06 c 47 23 122 0,17 6,536 0,183 0,3740 0,0101 2050 B08 c 57 33 150 0,22 6,307 0,183 0,3740 0,0101 2046 C01 c 45 20 177 23 204 0,117 0,3575 0,0100 2045 C03 c 130 32 0,13 0,118	B01 c	76	51	195	0,26	6,529	0,188	0,3738	0,0101	2052	56
B03 c 66 31 174 0,18 6,501 0,187 0,3730 0,0101 2048 B04 c 125 90 333 0,277 6,208 0,177 0,3591 0,0006 2034 B06 c 47 23 122 0,19 6,526 0,189 0,3740 0,0101 2050 B06 c 47 23 122 0,19 6,526 0,182 0,3740 0,0101 2050 B08 c 57 33 150 0,27 6,507 0,182 0,3740 0,0101 2050 B08 c 57 33 150 0,27 6,507 0,182 0,3756 0,0101 2050 C01 c 45 20 113 0,17 6,490 0,183 0,3756 0,0100 2045 C03 c 130 53 340 0,17 6,490 0,184 0,3756 0,0100 2053 C04 c 77 21 207 0,184 </th <th>B02 c</th> <th>68</th> <th>39</th> <th>177</th> <th>0,22</th> <th>6,416</th> <th>0,184</th> <th>0,3706</th> <th>0,0100</th> <th>2037</th> <th>56</th>	B02 c	68	39	177	0,22	6,416	0,184	0,3706	0,0100	2037	56
B04 125 90 333 $0,27$ $6,208$ $0,177$ $0,3591$ $0,0066$ 2034 B05 233 $2,27$ $6,208$ $0,177$ $0,3591$ $0,0006$ 2034 B06 47 23 122 $0,19$ $6,526$ $0,189$ $0,3740$ $0,0101$ 2050 B08 57 33 150 $0,22$ $6,307$ $0,182$ $0,0098$ 2046 B08 57 33 150 $0,27$ $6,490$ $0,182$ $0,3746$ $0,0101$ 2050 B08 57 33 119 $0,17$ $6,490$ $0,184$ $0,3726$ $0,0100$ 2047 C016 77 237 $0,184$ $0,3736$ $0,0100$ 2052 C056 17 211 207 $0,184$ $0,3736$ $0,0100$ 2044 C066 77 211 207 $0,190$ $0,3736$ $0,0100$	B03 c	99	31	174	0,18	6,501	0,187	0,3730	0,0101	2048	56
BD5 c 23 2 283 0,007 0,728 0,032 0,0822 0,0025 597 BD6 c 47 23 150 0,22 6,307 0,186 0,3740 0,0101 2050 BD8 c 57 33 150 0,22 6,307 0,186 0,3553 0,0098 2046 C01 c 45 20 119 0,17 6,490 0,185 0,3726 0,0100 2047 C03 c 130 59 340 0,17 6,490 0,185 0,3726 0,0100 2047 C04 c 77 27 203 0,13 6,490 0,184 0,3756 0,0100 2043 C05 c 107 23 287 0,08 6,526 0,177 0,3756 0,0100 2043 C06 c 77 21 207 0,191 0,3756 0,0100 2043 C07 c 106 23 0,3756 0,100 2043 2041<	B04 c	125	6	333	0,27	6,208	0,177	0,3591	0,0096	2034	56
B06 47 23 122 0,19 6,526 0,189 0,3740 0,0101 2050 B08 57 33 150 0,22 6,307 0,185 0,3653 0,0098 2046 B08 57 33 150 0,22 6,307 0,185 0,3653 0,0098 2046 C01c 45 20 119 0,17 6,490 0,185 0,3726 0,0100 2053 C03c 17 27 203 0,13 6,498 0,185 0,3726 0,0100 2054 C04c 77 27 203 0,13 6,498 0,185 0,3726 0,0100 2053 C05c 107 23 23 425 0,03 6,491 0,177 0,3756 0,0100 2053 C07c 106 23 0,337 0,191 0,3756 0,0100 2053 C07c 106 23 0,191 0,3756 0,1010	B05 c	23	7	283	0,007	0,728	0,032	0,0882	0,0025	597	100
B08 57 33 150 0,22 6,307 0,182 0,3623 0,0098 2046 C01 45 20 119 0,17 6,361 0,186 0,3658 0,0099 2045 C03 130 59 340 0,17 6,490 0,185 0,3726 0,0100 2047 C04 77 27 203 0,13 6,490 0,185 0,3726 0,0100 2045 C05 107 27 203 0,13 6,490 0,184 0,3726 0,0100 2053 C06 77 21 207 0,10 6,491 0,184 0,3726 0,0100 2053 C07 106 23 113 0,33 6,559 0,177 0,3750 0,0101 2053 C07 106 23 6,537 0,191 0,184 0,3756 0,0101 2053 D01 60 33 161 0,23 6,549 <th< th=""><th>B06 c</th><th>47</th><th>23</th><th>122</th><th>0,19</th><th>6,526</th><th>0,189</th><th>0,3740</th><th>0,0101</th><th>2050</th><th>56</th></th<>	B06 c	47	23	122	0,19	6,526	0,189	0,3740	0,0101	2050	56
C01c 45 20 119 $0,17$ $6,361$ $0,186$ $0,3658$ $0,0099$ 2045 C03 c 130 59 340 $0,17$ $6,490$ $0,183$ $0,3726$ $0,0100$ 2047 C03 c 130 59 340 $0,17$ $6,490$ $0,183$ $0,3726$ $0,0100$ 2047 C05 c 17 21 203 $0,13$ $6,491$ $0,184$ $0,3726$ $0,0100$ 2053 C05 c 77 21 207 $0,191$ $6,377$ $0,191$ $0,3726$ $0,0100$ 2053 C05 c 77 211 207 $0,191$ $0,3726$ $0,0100$ 2053 C07 c 106 233 $0,233$ $6,5377$ $0,191$ $0,3750$ $0,0101$ 2053 D01 c 50 333 425 $0,019$ $6,246$ $0,190$ $0,3750$ $0,0101$ 2036 D01 c	B08 c	57	33	150	0,22	6,307	0,182	0,3623	0,0098	2046	56
C03 c 130 59 340 0,17 6,490 0,183 0,3726 0,0100 2047 C04 c 77 27 203 0,13 6,498 0,185 0,3721 0,0100 2052 C05 c 107 23 287 0,08 6,529 0,184 0,3756 0,0100 2053 C05 c 107 23 287 0,08 6,526 0,177 0,3756 0,0100 2053 C06 c 77 21 207 0,10 6,491 0,184 0,3756 0,0100 2053 C07 c 106 23 2113 0,23 6,569 0,190 0,3750 0,0101 2053 D01 r 155 33 425 0,03 6,246 0,186 0,3653 0,0100 2034 D01 c 60 34 161 0,21 6,246 0,189 0,3648 0,0099 2034 D02 c 141 6 333 0,19	C01 c	45	20	119	0,17	6,361	0,186	0,3658	0,0099	2045	57
C04 c 77 27 203 0,13 6,498 0,185 0,3736 0,0100 2053 C05 c 107 23 287 0,08 6,529 0,184 0,3736 0,0100 2053 C05 c 77 21 207 0,10 6,491 0,184 0,3736 0,0100 2053 C05 c 77 21 207 0,10 6,529 0,184 0,3736 0,0100 2053 C06 c 77 21 207 0,10 6,491 0,184 0,3756 0,0100 2053 C07 c 106 23 113 0,23 6,569 0,190 0,3750 0,0101 2057 D01 c 60 34 161 0,21 6,264 0,191 0,3653 0,0101 2034 D01 c 60 33 0,17 6,246 0,185 0,2364 0,0100 2034 D01 c 60 33 0,17 6,246 0,185	C03 c	130	59	340	0,17	6,490	0,183	0,3726	0,0100	2047	55
C05 c 107 23 287 $0,08$ $6,529$ $0,184$ $0,3736$ $0,0100$ 2053 C06 c 77 21 207 $0,10$ $6,491$ $0,184$ $0,3725$ $0,0100$ 2048 C07 c 106 23 237 $0,08$ $6,256$ $0,177$ $0,3625$ $0,0101$ 2031 C07 c 106 23 2113 $0,33$ $6,569$ $0,190$ $0,3750$ $0,0101$ 2057 D01 r 155 33 113 $0,23$ $6,569$ $0,191$ $0,3750$ $0,0101$ 2057 D01 r 155 33 425 $0,008$ $6,377$ $0,191$ $0,3685$ $0,0100$ 2036 D01 r 155 33 425 $0,017$ $6,246$ $0,189$ $0,3612$ $0,0099$ 2029 D02 c 141 66 333 $0,19$ $6,264$ $0,186$ $0,3673$ $0,0099$ <	C04 c	11	27	203	0,13	6,498	0,185	0,3721	0,0100	2052	56
C06 c 77 21 207 0,10 6,491 0,184 0,3725 0,0100 2048 C07 c 106 23 293 0,08 6,256 0,177 0,3626 0,0097 2031 C07 c 106 23 2113 0,333 6,569 0,190 0,3750 0,0101 2057 D01 r 155 33 425 0,08 6,377 0,191 0,3648 0,0097 2031 D01 c 60 34 161 0,21 6,290 0,190 0,3648 0,0099 2036 D01 c 60 34 161 0,21 6,290 0,190 0,3648 0,0099 2036 D01 c 60 34 161 0,21 6,290 0,190 0,3643 0,0099 2036 D02 c 141 66 333 0,119 6,264 0,186 0,3653 0,0099 2030 D03 c 45 233 0,199	C05 c	107	23	287	0,08	6,529	0,184	0,3736	0,0100	2053	55
C07 c 106 23 293 0,08 6,256 0,177 0,3626 0,0097 2031 C08 c 46 38 113 0,33 6,569 0,190 0,3750 0,0101 2057 D01 r 155 33 425 0,08 6,377 0,191 0,3685 0,0100 2036 D01 c 60 34 161 0,211 6,290 0,190 0,3648 0,0099 2036 D01 c 60 34 161 0,211 6,246 0,185 0,3612 0,0099 2034 D03 c 141 66 383 0,17 6,246 0,185 0,3653 0,0098 2034 D03 c 144 166 533 0,190 6,3653 0,0100 2036 D04 c 106 79 276 0,190 0,3653 0,0099 2034 D05 c 106 6,423 0,190 0,3673 0,0099 2033 <	C06 c	11	21	207	0,10	6,491	0,184	0,3725	0,0100	2048	56
C08 c 46 38 113 0,33 6,569 0,190 0,3750 0,0101 2057 D01 r 155 33 425 0,08 6,377 0,191 0,3685 0,0100 2036 D01 c 60 34 161 0,21 6,290 0,191 0,3685 0,0100 2036 D01 c 60 34 161 0,21 6,246 0,185 0,3612 0,0099 2034 D02 c 141 66 383 0,17 6,246 0,185 0,3612 0,0098 2034 D03 c 86 45 233 0,19 6,264 0,186 0,3653 0,0098 2034 D04 c 106 79 276 0,29 6,358 0,189 0,3653 0,0099 2046 D05 c 106 79 276 0,190 0,3673 0,0099 2034 D06 c 41 17 108 0,165 0,3706 0,010	C07 c	106	23	293	0,08	6,256	0,177	0,3626	0,0097	2031	55
D01r 155 33 425 0,08 6,377 0,191 0,3685 0,0100 2036 D01 c 60 34 161 0,21 6,290 0,190 0,3648 0,0099 2039 D02 c 141 66 383 0,17 6,246 0,185 0,3612 0,0098 2034 D02 c 141 66 383 0,17 6,246 0,185 0,3612 0,0098 2034 D03 c 86 45 233 0,19 6,264 0,186 0,3653 0,0098 2034 D04 c 106 79 276 0,29 6,358 0,189 0,3653 0,0099 2046 D05 c 100 43 264 0,16 6,358 0,190 0,3717 0,0100 2033 D06 c 41 17 108 0,31 6,358 0,192 0,3706 0,0101 2015 D08 c 41 34 108 0.31 <th>C08 c</th> <th>46</th> <th>38</th> <th>113</th> <th>0,33</th> <th>6,569</th> <th>0,190</th> <th>0,3750</th> <th>0,0101</th> <th>2057</th> <th>56</th>	C08 c	46	38	113	0,33	6,569	0,190	0,3750	0,0101	2057	56
D01 c 60 34 161 0,21 6,290 0,190 0,3648 0,0099 2029 D02 c 141 66 383 0,17 6,246 0,185 0,3612 0,0098 2034 D03 c 86 45 233 0,17 6,246 0,186 0,3612 0,0098 2034 D03 c 86 45 233 0,19 6,244 0,186 0,3653 0,0098 2034 D04 c 106 79 276 0,29 6,358 0,189 0,3653 0,0099 2046 D05 c 100 43 264 0,166 6,423 0,190 0,3717 0,0100 2033 D06 c 41 17 108 0.31 6.341 0.195 0,3776 0,0101 2015 D08 c 41 34 108 0.31 6.341 0.195 0.3679 0,0101 2015	D01 r	155	33	425	0,08	6,377	0,191	0,3685	0,0100	2036	58
D02 c 141 66 383 0,17 6,246 0,185 0,3612 0,0098 2034 D03 c 86 45 233 0,19 6,264 0,186 0,3653 0,0098 2034 D03 c 86 45 233 0,19 6,264 0,186 0,3653 0,0098 2030 D04 c 106 79 276 0,29 6,358 0,190 0,3653 0,0099 2046 D05 c 100 43 264 0,16 6,423 0,190 0,3717 0,0100 2033 D06 c 41 17 108 0,16 6,338 0,192 0,3706 0,0101 2015 D08 c 41 34 108 0.31 6.361 0.195 0.3679 0,0009 2058	D01 c	60	34	161	0,21	6,290	0,190	0,3648	0,0099	2029	58
D03 c 86 45 233 0,19 6,264 0,186 0,3632 0,0098 2030 D04 c 106 79 276 0,29 6,358 0,189 0,3653 0,0099 2046 D05 c 100 43 264 0,16 6,423 0,190 0,3717 0,0100 2033 D05 c 41 17 108 0,16 6,338 0,192 0,3706 0,0101 2015 D06 c 41 34 108 0,31 6,361 0.105 0.3679 0,0000 2058	D02 c	141	99	383	0,17	6,246	0,185	0,3612	0,0098	2034	57
D04 c 106 79 276 0,29 6,358 0,189 0,3653 0,0099 2046 D05 c 100 43 264 0,16 6,423 0,190 0,3717 0,0100 2033 D05 c 41 17 108 0,16 6,338 0,192 0,3706 0,0101 2015 D06 c 41 34 108 0,16 6,338 0,192 0,3706 0,0101 2015 D08 c 41 34 108 0.31 6.361 0.195 0.3679 0.0099 2058	D03 c	86	45	233	0,19	6,264	0,186	0,3632	0,0098	2030	58
D05 c 100 43 264 0,16 6,423 0,190 0,3717 0,0100 2033 D06 c 41 17 108 0,16 6,338 0,192 0,3706 0,0101 2015 D08 c 41 34 108 0,31 6,361 0.195 0,3776 0,0101 2015 D08 c 41 34 108 0.31 6,361 0.195 0,3776 0,0101 2015	D04 c	106	79	276	0,29	6,358	0,189	0,3653	0,0099	2046	58
D06 c 41 17 108 0,16 6,338 0,192 0,3706 0,0101 2015 D08 c 41 34 108 0.31 6.361 0.195 0.3679 0.0090 2058	D05 c	100	43	264	0,16	6,423	0,190	0,3717	0,0100	2033	57
D08, 41 34 108 031 6361 0105 03670 00000 2058	D06 c	41	17	108	0,16	6,338	0,192	0,3706	0,0101	2015	59
	D08 c	41	34	108	0,31	6,361	0,195	0,3629	0,0099	2058	59

Appendix 3. LA-ICP-MS zircon U–Th–Pb isotope data for the anse du Cul-Rond gneiss.